We evaluated the insecticide activities of aqueous extracts of five species of plants from the Ecuadorian Amazon (Deguelia utilis (ACSm.) AMGAZEVEDO (Leguminosae: Papilionoideae), Xanthosoma purpuratum K. Krause (Alismatales: Araceae), Clibadium sp. (Asteracea: Asterales), Witheringia solanacea L'Hér (Solanales: Solanaceae), and Dieffenbachia costata H. Karst. ex Schott (Alismatales: Araceae)) plus Cymbopogon citratus Stapf. (Poales: Poaceae) under laboratory, open-field conditions in Plutella xylostella L. (diamondback moth), and semifield conditions in Brevicoryne brassicae L. Tap water was used as a negative control, and synthetic insecticides were used as positive controls. In a laboratory bioassay, aqueous extracts of D. utilis resulted in P. xylostella larval mortality. In contrast to chlorpyrifos, all botanicals were oviposition deterrents. All extracts except Clibadium sp. decreased leaf consumption by P. xylostella larvae. In semifield experiments, D. utilis, Clibadium sp., D. costata, and X. purpuratum initially controlled the population of B. brassicae, but 7 d after application, all botanicals except the D. utilis lost their ability to control the pest. In field experiments on broccoli crops in both dry and rainy seasons, the extracts did not control the abundance of P. xylostella, where as a mixture of two insecticides (chlorpyrifos + lambda cyhalothrin) did. These results show some incongruences from laboratory to semifield and field conditions, indicating that more studies, including the identification of the chemicals responsible for the biological activity, its stability, and the effects of chemotypes on insecticidal activity, are needed to understand the potential of these plant species as botanical insecticides.