Carbonaceous materials (CMs), including carbon nanotubes (CNTs), and black carbon have been suggested as potential remediation materials for hydrophobic organic contaminants (HOCs) in sediments or soils. However, the concentration-dependent and potential effects of CMs on the decrease in HOC bioavailability are not well understood. In this research, the effects of two types of multiwalled CNTs (MWNT-1 and MWNT-2) and chars (char-stalk produced from stalk and char-wood from wood) on the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs), including phenanthrene, pyrene, and chrysene, in the benthic organism Chironomus plumosus larvae were studied. When CM content was 1.5% or less in sediments, biota-sediment accumulation factor (BSAF) values for PAHs decreased sharply as CM increased. However, when char and MWNT-1 content was greater than 1.5% in sediments, reduction rates of BSAF were slight. Furthermore, when MWNT-2 content was greater than 1.5%, BSAF values were elevated. This indicated that the MWNT-associated PAHs may have been absorbed by larvae through particle ingestion, and suggested that some CNTs may not be suitable for the remediation of HOC-contaminated sediments because they probably could increase the exposure risk of PAHs to benthic organisms, possibly because of their unique structure.