Supramolecular polymeric hydrogels based on copolymers of 2‐hydroxyethyl methacrylate (HEMA) and HEMA functionalized with ureidopyrimidinone (quadruple H‐bonding motifs and HU comonomer) were prepared at different HU comonomer ratios (PH‐Sn, n = HU mol%). For comparison, HEMA homopolymers (PH‐Cn, n = mol% of a chemical cross‐linker) were synthesized. In contrast to PH‐S0, PH‐Sn copolymers act like cross‐linked hydrogels and absorb large amounts of water while retaining shape. Viscosities of the hydrogels decreased, and elastic and loss moduli increased with increasing HU content. Compression modulus of the swollen PH‐Sn hydrogels increased with HU content and varied between 54 and 240 kPa. Study of metronidazole loading/release behaviors of PH‐S6 hydrogel against PH‐C6 revealed a negligible burst effect for the former and a sustained release that continued for about 120 hours. We conclude that modification of poly(2‐hydroxyethyl methacrylate) with HU through urethane linkages is an effective strategy to developing physical hydrogels with predictable behavior for biomedical applications.