Fucoidan, a sulfated polysaccharide found in algae, plays a central role in marine carbon sequestration and exhibits a wide array of bioactivities. However, the molecular diversity and structural complexity of fucoidan hinder precise structure−function studies. To address this, we present an automated method for generating well-defined linear and branched α-fucan oligosaccharides. Our syntheses include oligosaccharides with up to 20 cis-glycosidic linkages, diverse branching patterns, and 11 sulfate monoesters. In this study, we demonstrate the utility of these oligosaccharides by (i) characterizing two endo-acting fucoidan glycoside hydrolases (GH107), (ii) utilizing them as standards for NMR studies to confirm suggested structures of algal fucoidans, and (iii) developing a fucoidan microarray. This microarray enabled the screening of the molecular specificity of four monoclonal antibodies (mAb) targeting fucoidan. It was found that mAb BAM4 has cross-reactivity to β-glucans, while mAb BAM2 has reactivity to fucoidans with 4-O-sulfate esters. Knowledge of the mAb BAM2 epitope specificity provided evidence that a globally abundant marine diatom, Thalassiosira weissflogii, synthesizes a fucoidan with structural homology to those found in brown algae. Automated glycan assembly provides access to fucoidan oligosaccharides. These oligosaccharides provide the basis for molecular level investigations into fucoidan's roles in medicine and carbon sequestration.