Phospholamban (PLN), a homopentameric, integral membrane protein, reversibly inhibits cardiac sarcoplasmic reticulum Ca 2؉ -ATPase (SERCA2a) activity through intramembrane interactions. Here, alaninescanning mutagenesis of the PLN transmembrane sequence was used to identify two functional domains on opposite faces of the transmembrane helix. Mutations in one face diminish inhibitory interactions with transmembrane sequences of SERCA2a, but have relatively little effect on the pentameric state, while mutations in the other face activate inhibitory interactions and enhance monomer formation. Double mutants are monomeric, but loss of inhibitory function is dominant over activation of inhibitory function. These observations support the proposal that the SERCA2a interaction site lies on the helical face which is not involved in pentamer formation. Four highly inhibitory mutants are effectively devoid of pentamer, suggesting that pentameric PLN represents a less active or inactive reservoir that dissociates to provide inhibitory monomeric PLN subunits. A model is presented in which the degree of PLN inhibition of SERCA2a activity is ultimately determined by the concentration of the inhibited PLN monomer⅐SERCA2a heterodimeric complex. The concentration of this inhibited complex is determined by the dissociation constant for the PLN pentamer (which is mutation-sensitive) and by the dissociation constant for the PLN/SERCA2a heterodimer (which is likely to be mutation-sensitive).
Phospholamban (PLN)1 is a 52-amino acid, integral membrane protein (1) that interacts with and reversibly inhibits the activity of the cardiac sarcoplasmic reticulum Ca 2ϩ -ATPase (SERCA2a). In this role, it is a major regulator of the kinetics of cardiac contractility (2). PLN has the mobility of a homopentamer in SDS gels, but the pentamer is dissociated to monomers by boiling in SDS (3). It is an open question whether the functional inhibitory unit is a pentamer or a monomer and whether pentamers and monomers are in dynamic equilibrium in the sarcoplasmic reticulum membrane.Much attention has been directed toward the phosphorylation sites on Ser 16 and Thr 17 in cytoplasmic domain Ia of PLN and their role in regulating the inhibitory function of PLN (4,5). In earlier studies we showed that the PLN cytoplasmic interaction site is formed by charged and hydrophobic amino acids 1-20 (6), while the complementary SERCA2a interaction site consists of amino acids Lys-Asp-Asp-Lys-Pro-Val 402 (7). In a later evaluation of potential transmembrane interaction sites (8), we coexpressed SERCA2a with PLN transmembrane sequences 31-52 (PLN domain II) or with PLN domain II constructs to which NH 2 -terminal, cytoplasmic epitopes such as PLN 1-20 or hemagglutinin were fused. We found that the inhibitory interaction site lies entirely in the transmembrane sequences of PLN and SERCA2a, but can be modulated, through long range interactions, by the noninhibitory cytoplasmic interaction site. We also discovered the phenomenon of "supershifting," in which the apparen...