N-Glycolylneuraminic acid (Neu5Gc) is a widely expressed sialic acid in mammalian cells. Although humans are genetically deficient in producing Neu5Gc, small amounts are present in human cells in vivo. A dietary origin was suggested by human volunteer studies and by observing that free Neu5Gc is metabolically incorporated into cultured human carcinoma cells by unknown mechanisms. We now show that free Neu5Gc uptake also occurs in other human and mammalian cells. Inhibitors of certain non-clathrin-mediated endocytic pathways reduce Neu5Gc accumulation. Studies with human mutant cells show that the lysosomal sialic acid transporter is required for metabolic incorporation of free Neu5Gc. Incorporation of glycosidically bound Neu5Gc from exogenous glycoconjugates (relevant to human gut epithelial exposure to dietary Neu5Gc) requires the transporter as well as the lysosomal sialidase, which presumably acts to release free Neu5Gc. Thus, exogenous Neu5Gc reaches lysosomes via pinocytic/endocytic pathways and is exported in free form into the cytosol, becoming available for activation and transfer to glycoconjugates. In contrast, N-glycolylmannosamine (ManNGc) apparently traverses the plasma membrane by passive diffusion and becomes available for conversion to Neu5Gc in the cytosol. This mechanism can also explain the metabolic incorporation of chemically synthesized unnatural sialic acids, as reported by others. Finally, to our knowledge, this is the first example of delivery to the cytosol of an extracellular small molecule that cannot cross the plasma membrane, utilizing fluid pinocytosis and a specific lysosomal transporter. The approach could, thus, potentially be generalized to any small molecule that has a specific lysosomal transporter but not a plasma membrane transporter.Sialic acid (Sia) 1 is a generic name for a family of acidic nine carbon sugars typically found as the outermost units of glycan chains on the vertebrate cellular glycocalyx and on secreted glycoproteins (1, 2). Their location and widespread occurrence on all vertebrate cells allow them to be involved in processes such as pathogen binding, inflammation, immune response, and tumor metastasis (3-8).There are more than 50 kinds of Sias known in nature (2, 9, 10). Most are derived via biosynthetic modification of a Sia called N-acetylneuraminic acid (Neu5Ac) (3,4,9). The addition of a single oxygen atom to the N-acetyl group of Neu5Ac gives a very common variation called N-glycolylneuraminic acid (Neu5Gc). The surfaces of most primate cell types studied to date are dominated by two major Sias, which are Neu5Ac and Neu5Gc (11,12).For a Sia molecule to get attached to glycoconjugates it must first be activated by conversion to the sugar nucleotide derivative cytidine monophosphate-Sia (CMP-Sia). Thus, Sias are converted to CMP-Sias in the nucleus, which then return to the cytosol to be transported into the Golgi apparatus, where they serve as high energy donors for attaching Sias to newly synthesized glycoconjugates on their way to the cell surfac...