Abstract2-quinolones are privileged scaffolds for drug discovery that are relatively rare in nature. Here, we characterise two promiscuous fungal polyketide synthases AthePKS and FerePKS, which we had previously found to produce quinolonesin vitro. We challenged the enzymes with several substituted anthranilic acid derivatives, revealing their ability to produce precursors of pharmaceutically relevant quinolones. We also discovered that AthePKS and FerePKS accept other 2-substituted benzoic acids, leading to the formation of coumarin and thiocoumarin scaffolds. We applied AthePKS in an artificial enzymatic cascade towards an antimicrobial 4-methoxy-1-methyl-2-quinolone and demonstrated itsin vivofeasibility by successfully expressing the pathway inEscherichia coli. Lastly, we determined the crystal structure of AthePKS, suggesting hotspots for enhancing its catalytic efficiency by enzyme engineering. Our results provide a framework for further engineering of enzymatic routes towards privileged heteroaromatic scaffolds and derivatives thereof.