The microbial degradation of xylan is a key biological process. Hardwood 4-O-methyl-D-glucuronoxylans are extensively decorated with 4-O-methyl-D-glucuronic acid, which is cleaved from the polysaccharides by ␣-glucuronidases. In this report we describe the primary structures of the ␣-glucuronidase from Cellvibrio mixtus (C. mixtus GlcA67A) and the ␣-glucuronidase from Pseudomonas cellulosa (P. cellulosa GlcA67A) and characterize P. cellulosa GlcA67A. The primary structures of C. mixtus GlcA67A and P. cellulosa GlcA67A, which are 76% identical, exhibit similarities with ␣-glucuronidases in glycoside hydrolase family 67. The membrane-associated pseudomonad ␣-glucuronidase released 4-O-methyl-D-glucuronic acid from 4-O-methyl-D-glucuronoxylooligosaccharides but not from 4-O-methyl-D-glucuronoxylan. We propose that the role of the glucuronidase, in combination with cell-associated xylanases, is to hydrolyze decorated xylooligosaccharides, generated by extracellular hemicellulases, to xylose and 4-O-methyl-D-glucuronic acid, enabling the pseudomonad to preferentially utilize the sugars derived from these polymers.