Exposure of Escherichia coli strains deficient in molybdopterin biosynthesis (moa) to the purine base N-6-hydroxylaminopurine (HAP) is mutagenic and toxic. We show that moa mutants exposed to HAP also exhibit elevated mutagenesis, a hyperrecombination phenotype, and increased SOS induction. The E. coli rdgB gene encodes a protein homologous to a deoxyribonucleotide triphosphate pyrophosphatase from Methanococcus jannaschii that shows a preference for purine base analogs. moa rdgB mutants are extremely sensitive to killing by HAP and exhibit increased mutagenesis, recombination, and SOS induction upon HAP exposure. Disruption of the endonuclease V gene, nfi, rescues the HAP sensitivity displayed by moa and moa rdgB mutants and reduces the level of recombination and SOS induction, but it increases the level of mutagenesis. Our results suggest that endonuclease V incision of DNA containing HAP leads to increased recombination and SOS induction and even cell death. Double-strand break repair mutants display an increase in HAP sensitivity, which can be reversed by an nfi mutation. This suggests that cell killing may result from an increase in double-strand breaks generated when replication forks encounter endonuclease V-nicked DNA. We propose a pathway for the removal of HAP from purine pools, from deoxynucleotide triphosphate pools, and from DNA, and we suggest a general model for excluding purine base analogs from DNA. The system for HAP removal consists of a molybdoenzyme, thought to detoxify HAP, a deoxyribonucleotide triphosphate pyrophosphatase that removes noncanonical deoxyribonucleotide triphosphates from replication precursor pools, and an endonuclease that initiates the removal of HAP from DNA.Extensive investigation has shown that purine base analogs can be mutagenic to cells. 2-Aminopurine has been shown to promote base-pair transitions in Escherichia coli and is highly mutagenic (47). It has been shown that the Klenow fragment of DNA polymerase I inserts either deoxythymidine triphosphate or deoxycytosine triphosphate opposite N-6-hydroxylaminopurine (HAP) in an oligonucleotide template and that HAP induces both A:T to G:C and G:C to A:T transition mutations in E. coli at a similar frequency (44). Both xanthine and hypoxanthine are readily taken up by cells and are quickly converted to their corresponding nucleotides during purine salvage. Furthermore, hypoxanthine, IMP, and XMP can arise endogenously from purine interconversion and from the deamination of canonical bases (51,52,62). Inosine residues in DNA have been shown to result in transition mutations, and xanthosine residues in DNA are assumed to result in transition mutations as well (22). Therefore, it is important for an organism to possess enzymes that protect it from exogenous and endogenous purine base analogs.Schaaper and colleagues have shown that E. coli strains deficient in molybdopterin biosynthesis are hypersensitive to HAP for both mutagenesis and toxicity (29). They established that HAP sensitivity is conferred by the inactivation of...