There is an urgent need for new drugs against malaria, which takes millions of lives annually. Cysteine proteases are potential new drug targets, especially when current drugs are showing resistance. Falcipains and vivapains are well characterized cysteine proteases of P. falciparum and P. vivax, respectively. Studies with cysteine protease inhibitors and manipulating cysteine proteases specific genes have suggested their roles in hemoglobin hydrolysis. In P. falciparum, falcipain-2 and falcipain-3 are major hemoglobinases that hydrolyze host erythrocyte hemoglobin in the parasite food vacuole. It is confirmed that disruption of the falcipain-2 gene led to a transient block in hemoglobin hydrolysis, and disruption of falcipain-3 gene was not possible, suggesting that protease is essential for erythrocytic parasites. On the other hand, vivapain-2, vivapain-3 and vivapain-4 are important cysteine proteases of P. vivax, which shared a number of features with falcipain-2 and falcipain-3. A recent study indicates that vivapains and aspartic protease of P. vivax works collaboratively to enhance the parasites' ability to hydrolyze host erythrocyte hemoglobin. Studies also indicate that falcipains and vivapains also hydrolyse the erythrocyte cytoskeleton proteins and involved in rupture of red blood cell. Structural and biochemical analysis of falcipains and vivapains showed that they have unique domains for specific functions. Overall, the complexes of cysteine proteases with small and macromolecular inhibitors provide structural insight to facilitate the drug design. Therefore, giving due importance to the cysteine proteases, this review will briefly focus the recent advancement in the field of cysteine proteases of human malaria parasites.