Raman spectroscopy is an optical technique capable of identifying chemical constituents of a sample by their unique set of molecular vibrations. Research on the applicability of Raman spectroscopy in the differentiation of cancerous versus normal tissues has been ongoing for many years, and has yielded successful results in the context of prostate, breast, brain, skin, and head and neck cancers as well as pediatric tumors. Recently, much effort has been invested on developing noninvasive "Raman" probes to provide real-time diagnosis of potentially cancerous tumors. In this regard, it is feasible that the Raman technique might one day be used to provide rapid, minimally invasive real-time diagnosis of tumors in patients. Raman spectroscopy is relatively new to the field of radiation therapy. Recent work involving cell lines has shown that the Raman technique is able to identify proteins and other markers affected by radiation therapy. Although this work is preliminary, one could ask whether or not the Raman technique might be used to identify molecular markers that predict radiation response. This paper provides a brief review of Raman spectroscopic investigations in cancer detection, benefits and limitations of this method, advances in instrument development, and also preliminary studies related to the application of this technology in radiation therapy response assessment.