Bone fractures to be corrected need stabilization of their extremities, which is achieved with the use of plates and screws. This research aimed to produce castor bean polyurethane (Ricinus communis), to make resorbable plate, structural and thermal analysis. The production was made by the glycerolysis of the triglycerides present in the oil, after addition of polyol/glycerol and hexamethylene diisocyanate (HDI) to form urethane structures, with and without addition of hydroxyapatite. The characterization was by FTIR spectroscopy, scanning electron microscopy (SEM), X-ray diffraction, differential scanning calorimetry and thermogravimetry. Plates with dimensions of 40 mm X 10 mm X 2 mm were obtained. The SEM showed flat and homogeneous surface. DRX analysis showed the semi-crystallinity of the biomaterial. Glass transition and thermal stability up to 50 °C were observed, followed by thermal decomposition up to 450 °C. The produced polyurethane showed it is possible to be applied in the manufacture of plate.