Background
Postmenopausal osteoporosis (PMO) is a chronic condition characterized by decreased bone strength. This study aims to investigate the effects and mechanisms of the combination of Butyricicoccus pullicaecorum (Bp) and 3-hydroxyanthranilic acid (3-HAA) on PMO.
Methods
The effects of Bp and 3-HAA on PMO were evaluated in ovariectomized (OVX) rats by assessing stereological parameters, femur microstructure, and autophagy levels. The T helper (Th) 17/Regulatory T (Treg) cells of rats were detected using flow cytometric analysis. Furthermore, the impact of Bp and 3-HAA on the gut microbiota of rats was assessed using 16S rRNA gene sequencing. The correlation between the gut microbiota of rats and Th17/Treg immune factors, as well as femoral stereo parameters, was separately assessed using Spearman rank correlation analysis.
Results
Bp and 3-HAA treatments protected OVX rats by promoting osteogenesis and inhibiting autophagy. Compared to the Sham group, OVX rats showed an increase in Th17 cells and a decrease in Treg cells. Bp and 3-HAA reversed these changes. Enterorhabdus and Pseudomonas were significantly enriched in OVX rats. Bp and 3-HAA regulated the gut microbiota of OVX rats, enriching pathways related to nutrient metabolism and immune function. There was a correlation between the gut microbiota and the Th17/Treg, as well as femoral stereo parameters. The concurrent administration of Bp and 3-HAA medication facilitated the enrichment of gut microbiota associated with the improvement of PMO.
Conclusion
The combination therapy of Bp and 3-HAA can prevent PMO by modulating the gut microbiota and restoring Th17/Treg immune homeostasis.