Background: For autonomous robot-delivered surgeries to ever become a feasible option, we recommend the combination of human-centered artificial intelligence (AI) and transparent machine learning (ML), with integrated Gross anatomy models. This can be supplemented with medical imaging data of cadavers for performance evaluation. Methods: We reviewed technological advances and state-of-the-art documented developments. We undertook a literature search on surgical robotics and skills, tracing agent studies, relevant frameworks, and standards for AI. This embraced transparency aspects of AI. Conclusion: We recommend "a procedure/skill template" for teaching AI that can be used by a surgeon. Similar existing methodologies show that when such a metricbased approach is used for training surgeons, cardiologists, and anesthetists, it results in a >40% error reduction in objectively assessed intraoperative procedures. The integration of Explainable AI and ML, and novel tissue characterization sensorics to tele