Bioethanol has a greater promise for environmental safety and energy security than fossil fuels. The alternate source required to meet the fuel's requirements can be provided by bioethanol. Untapped sugar-rich sources, like cellulose-rich household wastes, industrial wastes, and agricultural wastes, can all be used to make bioethanol at a minimal cost. The study's objective was to determine whether saccharomyces cerevisiae cells from the encapsulated NCIM 3095 strain of Saccharomyces cerevisiae could be used to make low-cost ethanol from a variety of lignocellulosic wastes, including newspaper, banana leaves, gram straw, soybean straw, and cow dung. To reduce bacterial contamination and serve as an external growth stimulator, benzathine penicillin G and ammonium sulfate were added to each sample broth containing calcium alginate-encapsulated yeast cells. The samples were fermented for ten days. The ethanol content was evaluated every three days. The largest yield of bioethanol was produced by soybean straw (10.0%), while the lowest was by cow dung (4.0%).