In this study, we aimed to evaluate the bioconversion ability of single (Lactiplantibacillus plantarum CBT LP3, Lactococcus lactis subsp. lactis CBT SL6, Streptococcus thermophilus CBT ST3) and multi-strain probiotics to convert rutin to quercetin in roasted tartary buckwheat, and to assess their biological activities. To evaluate the bioconversion efficiency, each strain was cultured for 24 h in MRS media with 5% roasted tartary buckwheat 'Hwangguem-Miso' powder. After then, rutin and quercetin contents were determined by HPLC. Additionally, the biological activities were compared before and after bioconversion of an ingredient. Anti-oxidant effects were measured by DPPH and ABTS assays. Anti-inflammatory effects were determined by measuring NO production, and levels of iNOS, TNF-α, IL-6 and IL-4 using an LPS-induced Raw 264.7 cell model. The bioconversion rate under the combination of three species of probiotics significantly increased more than single species. Antioxidant efficacy results showed the highest activity when the combination of three species of probiotics cultured. The pro-inflammatory factors such as nitric oxide, iNOS, TNF-a, and IL-6 were significantly decreased when the three types of probiotics were combined than single strain was cultured. In addition, level in the anti-inflammatory factor IL-4 was increased. The multi-strain probiotics showed increased bioconversion efficiency, effects of anti-oxidant and anti-inflammatory compared to the single strain. These findings suggest that the fermentation of tartary buckwheat by probiotics may be a valuable candidate for developing functional foods with anti-oxidation and anti-inflammation.