Greenhouse gas emissions from waste plastics have caused global warming all over the world, which has been a central threat to the ecological environment for humans, flora and fauna. Among waste plastics, waste polyethylene terephthalate (PET) is attractive due to its excellent stability and degradation-resistant. Therefore, merging China's carbon peak and carbon neutrality goals would be beneficial. In this review, we summarize the current state-of-the-art of carbon emission decrease from a multi-scale perspective technologically. We suggest that the carbon peak for waste PET can be achieved by employing the closed-loop supply chain, including recycling, biomass utilization, carbon capture and utilization. Waste PET can be a valuable and renewable resource in the whole life cycle. Undoubtedly, all kinds of PET plastics can be ultimately converted into CO 2, which can also be feedstock for various kinds of chemical products, including ethyl alcohol, formic acid, soda ash, PU, starch and so on. As a result, the closed-loop supply chain can help the PET plastics industry drastically reduce its carbon footprint.
KEYWORDSCarbon peak emission; PET plastic; recycling; waste management Abbreviations Table PET polyethylene terephthalate MEG monoethylene glycol GHG greenhouse gas PLA polylactic acid CLSC closed-loop supply chain This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.