Heat-shrinkable films are widely used as disposable secondary packaging but are conventionally made from fossilbased and nonbiodegradable polyvinyl chloride or polyethylene. To lower the environmental impact of such products, this work reports the development of recyclable, biodegradable, and partially biosourced heat-shrinkable biocomposites that are costcompetitive with existing shrink wraps. Poly(butylene adipate-co-terephthalate), a growing biodegradable thermoplastic, was simultaneously reinforced with pulp fibers and partially cross-linked in a single-step reactive melt processing. The designed peroxideinitiated reaction led to a 55 wt % cocontinuous insoluble gel incorporating all the pulp fibers into a cross-linked polymer network. In the solid state, the cross-linked biocomposite shows 60% elongation at break with a 200% increase in Young's modulus, while the only addition of pulp fibers stiffens and embrittles the matrix. Creep tests in the melt state indicated that the cross-linked network induces homogeneous shrinking even during the loading phase, demonstrating the potential use of the biocomposites as heatshrinkable films. The shrinking also promotes the shape-memory of the biocomposite, which retains its dimensions after four cycles. The circularity of the materials was assessed by mechanical recycling and industrial composting, which have proven feasible end-oflife options for heat-shrinkable biocomposites.