Chitosan is a natural, biodegradable, non-toxic and biocompatible polymer, with characteristics such as a healing, hemostatic, antimicrobial agent, among others. Therefore, the aim of this study is to develop a tubular chitosan device for use as a prosthetic coating application in vascular surgery. The chitosan wires were obtained by the spinning method in a 2M sodium hydroxide coagulant solution (NaOH) and used in the form of wires and screens as a reinforcement structure to obtain the tubes. In order to characterize the tubes, optical microscopy, contact angle, degree of swelling, in vitro biodegradation, cytotoxicity and tensile strength were used. The results indicated that the tubes have uniformity over the entire length and as for the resistance to the trace, the tube reinforced with mesh presented greater deformation, while the tube reinforced with wire presented a higher value of rupture stress. The degree of swelling was higher in chitosan tubes with mesh. As for the biodegradation test, it was observed that the lysozyme samples showed greater loss of mass and the cytotoxicity test confirmed the cell viability of the material, concluding that the tubes reinforced with chitosan wires are promising for use in vascular surgeries.