Planococcus sp. S5, a Gram-positive bacterium isolated from the activated sludge is known to degrade naproxen in the presence of an additional carbon source. Due to the possible toxicity of naproxen and intermediates of its degradation, the whole cells of S5 strain were immobilized onto loofah sponge. The immobilized cells degraded 6, 9, 12 or 15 mg/L of naproxen faster than the free cells. Planococcus sp. cells immobilized onto the loofah sponge were able to degrade naproxen efficiently for 55 days without significant damage and disintegration of the carrier. Analysis of the activity of enzymes involved in naproxen degradation showed that stabilization of S5 cells in exopolysaccharide (EPS) resulted in a significant increase of their activity. Changes in the structure of biofilm formed on the loofah sponge cubes during degradation of naproxen were observed. Developed biocatalyst system showed high resistance to naproxen and its intermediates and degraded higher concentrations of the drug in comparison to the free cells.