Redox conditions in heated and unheated microcosm experiments were studied to evaluate the effect of thermal remediation treatment on biogeochemical processes in subsurface environments. The results were compared to field-scale observations from thermal treatments of contaminated sites. Trichloroethene-contaminated aquifer material and groundwater from Ft. Lewis, WA were incubated for 200 days at ambient temperature (i.e., 10 degrees C) or heated to 100 degrees C for 10 days and cooled slowly over a period of 150 days to mimic a thermal treatment. Increases of up to 14 mM dissolved organic carbon were observed in the aqueous phase after heating. Redox conditions did generally not change during heating in the laboratory experiment, and only minor changes occurred as an effect of heat treatment in the field. The conditions were slightly manganese/iron-reducing in two sediments and possibly sulfate-reducing in the third sediment based on production of up to 0.20 mM dissolved iron and 0.15 mM dissolved manganese and consumption of 0.08 mM sulfate. The calculated energy gain of less than -20 kJ/mol H2 for iron and sulfate reduction as well as methane production indicated that these processes were thermodynamically favorable. Sulfate reduction and methane production occurred in the unheated microcosms upon lactate amendment. Little or no reduction of the redox level was identified in heated lactate-amended microcosms, possibly because of limited microbial activity. Because the redox conditions, pH, and alkalinity remained within normal aquifer levels upon heating, bioaugmentation may be feasible for stimulating anaerobic dechlorination in heated samples or in future field applications.