Large-scale industrial burners are essential components in various industries including power generation and chemical processing. Enhancing their energy efficiency and reducing emissions, particularly nitrogen oxides (NOx), requires a combination of experimental research and computational fluid dynamics (CFD) simulations. While there exist numerous emission control techniques, the main focus of the present review study was the passive control technique. The result of this review indicates that biodiesel fuel crude palm oil (CPO) was found to reduce emission components, particularly carbon components and particulate matter (PM). Moreover, it also mitigates cavitation within the injector’s orifice, reducing wear and tear. Although cavitation enhances spray atomization and creates finer droplets for improved combustion, it can damage injector orifices. Optimizing the orifice design, such as by adopting conical orifices over cylindrical ones, can significantly reduce cavitation and its adverse effects. Furthermore, innovations such as swirling fuel–air premixing within injectors enhance combustion efficiency and lower emissions by improving fuel–air mixing. However, spray characteristics, particularly the Sauter mean diameter (SMD), remain critical for predicting combustion performance. Further investigations into spray fineness and its impact on combustion dynamics are essential for advancing emission control and performance optimization.