The Ni-ZSM-5 catalyst, under four different factors of Swida wilsoniana pyrolysis products of catalytic hydrogenation, GC-MS, FI-IR, and elemental analyzers, was used to identify the elements, carbon chain distribution, and composition of the products. The effects of reaction temperature, reaction pressure, and catalyst hydrogenation level on the conversion rate were investigated. The reaction pressure and the amount of catalyst are the main factors that affect the conversion of the pyrolysis products into biofuels. Using 1.05 wt.% Ni-ZSM-5 catalyst, the highest conversion rate was 98.10% at 173°C and 2.00 MPa. The results show that Swida wilsoniana-decomposed products can be converted to high-quality biofuels by catalytic hydrogenation of Ni-ZSM-5 and can be used as an alternative energy source.