Abstract:We carried out an intensive sampling survey in ancient Lake Ohrid (Macedonia/Albania), covering all seasons, to determine total species number, relative species abundances and spatial distribution of Ostracoda. We identified 32 living species that belong to seven families (Candonidae, Ilyocyprididae, Cyprididae, Leptocytheridae, Limnocytheridae, Cytherideidae, and Darwinulidae) and 15 genera (Candona, Fabaeformiscandona, Candonopsis, Cypria, Cyclocypris, Ilyocypris, Eucypris, Prionocypris, Bradleystrandesia, Herpetocypris, Dolerocypris, Amnicythere, Paralimnocythere, Cytherissa, and Darwinula). Six additional species were identified from empty carapaces and valves. Dominant families in Lake Ohrid were Candonidae and Limnocytheridae, representing 53% and 16% of all species, respectively. Prevalence of species flocks in these two families confirms the "young" ancient status of the lake. Amnicythere displays a preference for oligo-haline to meso-haline waters, but some species are found in saline environments, which suggests Lake Ohrid has a marine history. Recent studies, however, indicate fluvial/glaciofluvial deposition at the onset of Lake Ohrid sedimentation. Candona is the most diverse genus in Lake Ohrid, represented by 12 living (Candona hadzistei, C. marginatoides, C. media, C. ovalis, C. vidua, Fabaeformiscandona krstici, Cypria lacustris, C. obliqua and Amnicythere karamani). Cypria lacustris was overall the most abundant species and Cypria obliqua displayed the highest abundance at 280 m water depth. Principal environmental variables that influence ostracode distributions in Lake Ohrid are water depth and conductivity. In general, species richness, diversity and evenness were greater in waters <60 m deep, with highest values often found in the littoral zone, at depths <30 m. Candonids, however, displayed highest diversity in the sublittoral (30-50 m) and profundal (50-280 m) zones. The most frequent species encountered are taxa endemic to the lake (14 living species), which have a wide depth range (≤280 m), and display higher abundance with greater water depth. Non-endemic species were rare, limited to water depths <50 m, and were found mainly in the north part of the lake where anthropogenic pressure is high. Several cosmopolitan species were encountered for the first time, which suggests that these widespread species are new arrivals that may replace endemics as human impacts increase.