Background: Antimicrobial resistance in multidrug-resistant Acinetobacter baumannii (MDR-AB) isolated from burn wound infections is a major concern in intensive care or burns units worldwide, and molecular studies are considered critical strategies for control of MDR-AB outbreaks in this regard. Thus, in this study, antibiotic resistance, biofilm-forming ability, molecular epidemiology of MDR A. baumannii strains recovered from patients with burns were investigated in three major hospital centers of Iran. Methods: In this cross-sectional research, 163 non-repetitive A. baumannii strains were tested for susceptibility to antimicrobial agents. Polymerase chain reaction (PCR) was performed to characterize ambler classes A, B, and D βlactamases, ISAba1 and integrons, biofilm formation was also investigated. Clonal relatedness was analyzed using Pulsed-Field Gel Electrophoresis (PFGE). Results: Among 163 A. baumannii strains collected, 94.5% of them were Carbapenem-Non-Susceptible A. baumannii (CNSAB) and also 90.1 and 52.2% of them were Metallo-β-Lactamases (MBL) and Extended-Spectrum β-Lactamases (ESBL) producing isolates, respectively. Colistin and polymyxin B exhibited excellent activity against CNSAB strains. High prevalence of bla OXA − 23-like (85.1%), bla VIM (60.5%), bla PER − 1 (42.3%), tetB (67.8%), and Class 1 integrons (65.6%) were identified in CNSAB strains. ISAba1 element was associated with 42 (25.8%) and 129 (98.5%) of bla OXA-51-like and bla OXA-23-like genes, respectively. 6 clusters with the ability to form strong biofilms were found to be dominant and endemic in our entire areas. Conclusions: Results of the present study show that antimicrobial resistance in CNSAB isolates from burn wound infections in monitored hospitals in Iran is multifactorial, and also findings of the study suggested that local antibiotic prescription policies should be regularly reviewed, and efficient infection control measures should be observed. Therefore, further strengthening of surveillance of antimicrobial resistance is urgently needed in these regions.