This paper presents the stoichiometry section of a bioenergetics investigation into the biogas plasticization of wastewater sludge using the Anaerobic Pump (TAP). Three residue samples, an input substrate and two residual products, were collected from two side by side operated AD systems, a conventional continuous flow and stirred reactor, and TAP, and submitted for elemental and calorimetric analyses. The elemental compositions of the residues were fitted to a heterotrophic metabolism model [1] for both systems. To facilitate balanced stoichiometric models, a simple "cell" correction computation separates measured residual composites into "real" residual composition and cell growth (C5H7NO2) components. The elemental data and model results show that the TAP stage II residual composition (C1H0.065O0.0027N0.036) was nearly devoid of hydrogen and oxygen, leaving only fixed carbon and cells grown as the composition of the remaining mass. This quantitative evidence supports prior measurements of very high methane yields from TAP stage II reactor during steady-state experiments [2]. All performance parameters derived from the stoichiometric model(s) showed good agreement with measured steady-state averaged values. These findings are strong evidence that plasticization-disruption (TAP) cycle is the mechanism responsible for the observed increases in methane yield. The accuracy achieved by the stoichiometry models qualifies them for thermodynamic analysis to obtain potentials and bioconversion efficiencies. How applied pressure causes matrix conformation changes triggered by a functional consequence (plasticization and disruption) is this study's essential focus.