The relationship between the intestines and their microbiota, the liver, and the neuronal system is called the gut-liver-brain axis. This relationship has been studied and observed for a relatively short time but is considered in the development of research focused on, e.g., liver diseases and intestinal dysbiosis. The role of the gut microbiota in this relationship is crucial, as it acts on poultry’s performance and feed utilization, affecting meat and egg quality. The correct composition of the intestinal microbiota makes it possible to determine the essential metabolic pathways and biological processes of the individual components of the microbiota, allowing further speculation of the role of microbial populations on internal organs such as the liver and brain in the organism. The gut microbiota forms a complex, dense axis with the autonomic and enteric nervous systems. The symbiotic relationship between the liver and gut microbiota is based on immune, metabolic and neuroendocrine regulation, and stabilization. On the other hand, the gut-brain axis is a bidirectional interaction and information transfer system between the gastrointestinal tract and the central nervous system. The following paper will discuss the current state of knowledge of the gut-liver-brain axis of poultry, including factors that may affect this complex relationship.