We report a facile, green and precursor-based comparative study on the biosynthesis of zinc oxide (ZnO) nanoparticles (NPs) using anticancerous Fagonia indica as effective chelating agent. Biosynthesis was carried out using zinc sulfate and zinc acetate as precursor salts to make ZnO S and ZnO A NPs under similar experimental conditions which were characterized extensively for physical and biological properties. Scherrer equation deduced a mean crystallite size of ~23.4 nm for ZnO A NPs and ~41 nm for ZnO S NPs. The nature of the NPs was compared using UV, diffuse reflectance spectra, Fourier transform infrared spectroscopy, thermogravimetric analysis-DTA, selected area electron diffraction, EDS, zeta potential, high resolution (HR)-SEM, and HR-TEM. Detailed in vitro pharmacognostic activities revealed a significant therapeutic potential for ZnO A and ZnO S . Potential antimicrobial activities for the NPs and their nanocosmeceutical formulations are reported. ZnO A NPs were more cytotoxic to Leishmania tropica as compared to ZnO S . Significant antioxidant and protein kinase inhibition was obtained. The hemolytic assay indicated a hemocompatible nature of both ZnO A and ZnO S NPs. Catalytic degradation of crystal violet dye (CVD) by NPs was examined under different parameters (light, dark, UV). Furthermore, sonophotocatalytic degradation of CVD was also studied. Our results suggested that precursor can have a significant effect on the physical, biological, and catalytic properties of the NPs. In future, we recommend different other in vitro, in vivo biological activities, and mechanistic studies of these as-synthesized NPs.