Biogeomorphological niche of a landform: Machine learning approaches reveal controls on the geographical distribution of Nitraria tangutorum nebkhas
Haochen Zhang,
Shihan Li,
Joseph A. Mason
et al.
Abstract:Nebkhas are distinctive biogeomorphological landforms prevalent in global drylands and coastal environments. They play a crucial role in supporting local biodiversity and preventing land desertification and often serve as an indicator of local environmental change. Despite their significance, the environmental factors that affect their geographical distribution and how they respond to climate change have not been fully explored. This study represents a novel application of machine learning models to quantifyin… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.