We investigated whether tramadol or its active metabolite, O-desmethyltramadol, are substrates of the organic cation transporter OCT1 and whether polymorphisms in OCT1 affect tramadol and O-desmethyltramadol pharmacokinetics. Tramadol showed high permeability through parallel artificial membrane permeability assays (PAMPAs). Tramadol uptake in HEK293 cells did not change after OCT1 overexpression, and the concentrations of tramadol in the plasma of healthy volunteers were independent of their OCT1 genotypes. In contrast, O-desmethyltramadol showed low membrane permeability, and OCT1 overexpression increased O-desmethyltramadol uptake 2.4-fold. This increase in uptake was reversed by OCT1 inhibitors and absent when loss-of-function OCT1 variants were overexpressed. Volunteers carrying loss-of-function OCT1 polymorphisms had significantly higher plasma concentrations of O-desmethyltramadol (P = 0.002, n = 41) and significantly prolonged miosis, a surrogate marker of opioidergic effects (P = 0.005, n = 24). In conclusion, polymorphisms in OCT1 influence the pharmacokinetics of O-desmethyltramadol, presumably by affecting its uptake into liver cells, and thus may modulate the efficacy of tramadol treatment.