Fiber-based pressure/temperature sensors are highly desired in wearable electronics because of their natural advantages of good breathability and easy integrability. However, it is still a great challenge to fabricate reliable and highly sensitive fiber-based pressure/temperature sensors via a scalable and facile strategy. Herein, a novel fiber-based iontronic sensor with excellent pressure-and temperature-sensing capabilities is designed by assembling two crossed hollow and porous ionogel fibers filled with liquid metal. Serving as a pressure sensor, a high detection resolution (1.16 Pa), a high sensitivity of 13.30 kPa −1 (0−2 kPa), and a wide detection range (∼207 kPa) are realized owing to its novel hierarchical structure and the selection of deformable liquid electrodes. As a temperature sensor, it exhibits a high temperature sensitivity of 25.99% °C−1 (35−40 °C), high resolution of 0.02 °C, and good repeatability and reliability. On the basis of these excellent sensing capabilities, the as-prepared sensor can detect not only pressure signals varied from weak pulse to large joint movements but also the proximity of different objects. Furthermore, a large-area fiber array can be easily woven for acquiring the pressure mapping to intuitively distinguish the location, magnitude, and shape of the loaded object. This work provides a universal strategy to design fiber-shaped iontronic sensors for wearable electronics.