The rapid and improper disposal of electronic waste (e-waste) has become an issue of great concern, resulting in serious threats to the environment and public health. In addition, e-waste is heterogenous in nature, consisting of a variety of valuable metals in large quantities, hence the need for the development of a promising technology to ameliorate environmental hazards associated with the indiscriminate dumping of e-waste, and for the recovery of metal components present in waste materials, thus promoting e-waste management and reuse. Various physico-chemical techniques including hydrometallurgy and pyrometallurgy have been employed in the past for the mobilization of metals from e-waste. However, these approaches have proven to be inept due to high operational costs linked to the consumption of huge amounts of chemicals and energy, together with high metal loss and the release of secondary byproducts. An alternative method to avert the above-mentioned limitations is the adoption of microorganisms (bioleaching) as an efficient, cost-effective, eco-friendly, and sustainable technology for the solubilization of metals from e-waste. Metal recovery from e-waste is influenced by microbiological, physico-chemical, and mineralogical parameters. This review, therefore, provides insights into strategies or pathways used by microorganisms for the recovery of metals from e-waste.