Summary
Introduction The aim of this study was to compare compressive strength (Cs) of new nanostructural calcium silicate based cement (nCS) with commercial calcium silicate cement and conventional GIC. Methods Four nanostructural materials were tested: nanostructural calcium silicate based cement (nCS) (Jokanović et al.), MTA Plus (Cerkamed, Poland), Fuji IX (GC Corporation, Japan) and Ketac Universal Aplicap (3M ESPE, USA). Five samples of each material were mixed in accordance with manifecturer’s guidelines and positioned in metal moulds (ϕ4mm and 6mm). Compressive strength (Cs) expressed in MPa was determined after 24 hours, 7 days and 28 days respectively. Measurements were performed on universal testing equipment (Tinius Olsen, USA) at a crosshead speed of 1mm/min. For processing the results one-way ANOVA and post-hoc test were used. Results The highest values of compressive strength after 24h was found in conventional GIC Fuji IX (mean 38.56±13.31) and Ketac Universal (mean 40.77±7.96). Calcium silicate cements after 24h showed low values of compressive strength (MTA Plus 5.91±0.28 MPa, nCS 1.35±0.36 MPa). After 7 days, FUJI IX 47.42±9.33 MPa and Ketac Universal 35.25±10.60 MPa showed higher value of compressive strength than MTA Plus (15.09±2.77 MPa) and nCS (11.06±0.88 MPa). After 28 days the Cs value for conventional GIC Fuji IX was 48.03±7.82 MPa and Ketac Universal 36.65±11.13 MPa while for calcium silicate cements it was 16.47±1.89 MPa and nCS 14.39±1.63 MPa. There was statistically significant difference (p<0.05) in Cs between conventional GIC and CS cements after 24h, 7 and 28 days. Conclusions Calcium silicate cements initially showed lower values of compressive strength than conventional GIC that increased over time.