The determination of the RBE for the MANTA fast neutrons produced by NRL is inprogress, with the model system using tumor cell population kinetic response patterns assayed in vitro after irradiation in vivo. Ascites tumor cells BW-5147 were irradiated with a clinically usable fast neutron beam from the NRL cyclotron, which is produced by accelrating deuterons to 35 MeV and using htem to bombard a thick berylliumtarget. The comparison of dose-effect relationships was made for doses ranging from30 to 1000 rads. The doses required for an isoeffect on BW-5147 hypoxic tumor cell survival and impairment of its reproductive capacity from fast neutron exposure were not different wheither it was given a single dose or the same dose given in three fractions separated by long recovery periods in situ. No intracellular repair of sublethal injury when the dose was given in three fractions, although the hypoxic BWp5147 tumor cells haveno effective reoxygenation or repopulation in this time interval. The RBE for the fast neutron beam is 4 relative to x rays for fractionated doses at the surviving fractionlevel of 0.6-0.7, while the RBE IS 2.5 FOR SINGLE DOSES. However, at a surviving fraction of 0.1, the RBE is 1.9 for single and 2.8 for fractionated doses. Analysis of thedaily cell population rate or mitotic delay between the two types of radiations at a similiar level of survival.