A rapid approach based on two-dimensional DNA gel electrophroesis (2-DGE) mapping with selective primer pairs was employed to analyze bacterial community structure in sediments from upstream, midstream and downstream of Sagami River in Japan. The 2-DGE maps indicated that Alpha- and Delta-proteobacteria were major bacterial populations in the upstream and midstream sediments. Further bacterial community structure analysis showed that richness proportion of Alpha- and Delta-proteobacterial groups reflected a trend toward decreasing from the upstream to downstream sediments. The biomass proportion of bacterial populations in the midstream sediment showed a significantly difference from that in the other sediments, suggesting that there may be an environmental pressure on the midstream bacterial community. Lorenz curves, together with Gini coefficients were successfully applied to the 2-DGE mapping data for resolving evenness of bacterial populations, and showed that the plotted curve from high-resolution 2-DGE mapping became less linear and more an exponential function than that of the 1-DGE methods such as chain length analysis and denaturing gradient gel electrophoresis, suggesting that the 2-DGE mapping may achieve a more detailed evaluation of bacterial community. In conclusion, the 2-DGE mapping combined with the selective primer pairs enables bacterial community structure analysis in river sediment and thus it can also monitor sediment pollution based on the change of bacterial community structure.