The study and application of cilia flow have implications across a wide range of disciplines, from medicine and biology to engineering and robotics, contributing to advancements in healthcare, biotechnology, and fluid dynamics research. Motivated by these applications, a numerical simulation is performed to investigate the mixed convective cilia flow of MHD hyperbolic tangent fluid in a curved channel. The analysis is performed in the presence of viscous dissipation. The curvilinear coordinates are used due to the curved nature of flow geometry in the derivation of flow equations. The fluid motion arises from the metachronal waves generated by the cilia. The constitutive equations are simplified by the hypothesis of the lubrication approximation and then solved numerically using the Keller Box method. Comprehensive investigation of velocity, temperature, pumping phenomena, streamlines, skin friction, and Nusselt number are graphed and analyzed. The results obtained from the analysis convey that the fluid velocity decreases with an increase in the magnetic field and increases with a rise in the Weissenberg number. The Nusselt number increases with the Brinkman number while the reverse observations are predicted for curvature parameter. Streamlines show fluid movement driven by cilia oscillations. Furthermore, the skin friction and Nusselt number at the channel walls are determined for a variety of critical parameter assessments. Potential applications of the current work include mucus clearance from the respiratory tract, microfluidics, oesophageal transport, biofluid mechanisms, and other fields of physiology.