Despite recent advances in understanding disease biology, treatment of Group 3/4 medulloblastoma remains a therapeutic challenge in pediatric neuro-oncology. Bulk-omics approaches have identified considerable intertumoral heterogeneity in Group 3/4 medulloblastoma, including the presence of clear single-gene oncogenic drivers in only a subset of cases, whereas in the majority of cases, large-scale copy-number aberrations prevail. However, intratumoral heterogeneity, the role of oncogene aberrations, and broad CNVs in tumor evolution and treatment resistance remain poorly understood. To dissect this interplay, we used single-cell technologies (snRNA-seq, snATAC-seq, spatial transcriptomics) on a cohort of Group 3/4 medulloblastoma with known alterations in the oncogenes MYC, MYCN, and PRDM6. We show that large-scale chromosomal aberrations are early tumor initiating events, while the single-gene oncogenic events arise late and are typically sub-clonal, but MYC can become clonal upon disease progression to drive further tumor development and therapy resistance. We identify that the subclones are mostly interspersed across tumor tissue using spatial transcriptomics, but clear segregation is also present. Using a population genetics model, we estimate medulloblastoma initiation in the cerebellar unipolar brush cell-lineage starting from the first gestational trimester. Our findings demonstrate how single-cell technologies can be applied for early detection and diagnosis of this fatal disease.