Autophagy is a self-digestion process in cells that can maintain energy homeostasis under normal circumstances. However, misfolded proteins, damaged mitochondria and other unwanted components in cells can be decomposed and reused via autophagy in some specific cases (including hypoxic stress, low energy states or nutrient deprivation). Therefore, autophagy serves a positive role in cell survival and growth. However, excessive autophagy may lead to apoptosis. Furthermore, abnormal autophagy may lead to carcinogenesis and promote tumorigenesis in normal cells. In tumor cells, autophagy may provide the energy required for excessive proliferation, promote the growth of cancer cells, and evade apoptosis caused by certain treatments, including radiotherapy and chemotherapy, resulting in increased treatment resistance and drug resistance. On the other hand, autophagy leads to an insufficient nutrient supply in cancer cells and the destruction of energy homeostasis, thereby inducing cancer cell apoptosis. Therefore, understanding the mechanism of the double-edged sword of autophagy is crucial for the treatment of cancer. The present review summarizes the signaling pathways and key factors involved in autophagy and cancer to provide possible strategies for treating tumors.