Identification of novel approaches for managing the global pest, the Fall armyworm, Spodoptera frugiperda, is the need of the hour, as it defies many management strategies including synthetic chemicals, Bt transgenics, and so on. Recently CRISPR/Cas9‐based genome editing opened up newer avenues to design novel pest management strategies such as precision‐guided sterile insect technique (pgSIT). In this regard, genes governing sex determination, egg reproduction, and spermatogenesis could be the prime targets for genome editing. This requires validation of the target genes, preferably by a nontransgenic DNA‐free editing, before the final application. One such important gene regulating sex determination in Drosophila is the Sex lethal (Sxl). However, the function of Sxl is not highly conserved in other insects and, in particular, we are beginning to comprehend its role in Lepidoptera with only one reference available in Spodoptera litura till date. In the present study, we have edited the sxl gene of S. frugiperda through the delivery of ribonucleoprotein complex (sgRNA + Cas9) at G0 stage embryo, targeting the conserved region of all the documented five splice variants. Results clearly showed that editing of sxl gene impacted the overall fecundity and hatching rate. Therefore, Sxl could be one of the target genes for developing pgSIT approach for the management of S. frugiperda.