Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Growth differentiation factor 15 (GDF15) is a crucial biomarker in various physiological and pathological processes. While elevated GDF15 levels are linked to increased mortality risk, the role of DNA methylation (DNAm)-predicted GDF15 in predicting mortality has not been extensively studied. The purpose of the study is to investigate the association between DNAm-predicted GDF15 levels and all-cause and cardiovascular disease (CVD) mortality in a nationally representative cohort. Methods Data from NHANES 1999–2002 were analyzed. DNAm-predicted GDF15 levels were estimated using a regression model. Weighted multivariate Cox regressions were employed to assess the relationship between DNAm-predicted GDF15 and mortality outcomes. Restricted cubic splines were used to explore dose-response relationships, and subgroup analyses were conducted to enhance result reliability. Results Higher DNAm-predicted GDF15 levels were significantly associated with increased all-cause mortality risk (HR = 1.08, 95% CI: 1.02–1.15). Participants in the highest DNAm-predicted GDF15 tertile showed significantly higher all-cause mortality risk (HR = 1.56, 95% CI: 1.16–2.10) and a 2.52-fold increased risk of cardiovascular mortality (HR = 2.52, 95% CI: 1.22–5.19). Kaplan-Meier curves revealed decreasing survival probability with higher DNAm-predicted GDF15 tertiles. Restricted cubic spline analysis demonstrated a non-linear dose-response relationship between DNAm-predicted GDF15 levels and cardiovascular mortality. The positive correlation between DNAm-predicted GDF15 and mortality remained robust in most of subgroups. Conclusions DNAm-predicted GDF15 independently predicts all-cause and cardiovascular mortality. This association persists across multiple models and stratified subgroups, supporting GDF15’s value as a biomarker for mortality risk stratification. Future research should elucidate underlying biological mechanisms and evaluate GDF15’s clinical utility in guiding mortality risk reduction interventions.
Background Growth differentiation factor 15 (GDF15) is a crucial biomarker in various physiological and pathological processes. While elevated GDF15 levels are linked to increased mortality risk, the role of DNA methylation (DNAm)-predicted GDF15 in predicting mortality has not been extensively studied. The purpose of the study is to investigate the association between DNAm-predicted GDF15 levels and all-cause and cardiovascular disease (CVD) mortality in a nationally representative cohort. Methods Data from NHANES 1999–2002 were analyzed. DNAm-predicted GDF15 levels were estimated using a regression model. Weighted multivariate Cox regressions were employed to assess the relationship between DNAm-predicted GDF15 and mortality outcomes. Restricted cubic splines were used to explore dose-response relationships, and subgroup analyses were conducted to enhance result reliability. Results Higher DNAm-predicted GDF15 levels were significantly associated with increased all-cause mortality risk (HR = 1.08, 95% CI: 1.02–1.15). Participants in the highest DNAm-predicted GDF15 tertile showed significantly higher all-cause mortality risk (HR = 1.56, 95% CI: 1.16–2.10) and a 2.52-fold increased risk of cardiovascular mortality (HR = 2.52, 95% CI: 1.22–5.19). Kaplan-Meier curves revealed decreasing survival probability with higher DNAm-predicted GDF15 tertiles. Restricted cubic spline analysis demonstrated a non-linear dose-response relationship between DNAm-predicted GDF15 levels and cardiovascular mortality. The positive correlation between DNAm-predicted GDF15 and mortality remained robust in most of subgroups. Conclusions DNAm-predicted GDF15 independently predicts all-cause and cardiovascular mortality. This association persists across multiple models and stratified subgroups, supporting GDF15’s value as a biomarker for mortality risk stratification. Future research should elucidate underlying biological mechanisms and evaluate GDF15’s clinical utility in guiding mortality risk reduction interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.