BackgroundIn clinical practice, it is difficult to monitor the repeating relapse in patients who have been suffering from systemic lupus erythematosus (SLE). The underlying etiology remains largely unknown.MethodsAiming to understand the pathogenesis of SLE, a detailed study was conducted. Renal tubular cells–derived iPSCs were successfully obtained from the urine of SLE patients and healthy controls. With the purpose to identify simultaneous expression profiling of microRNA, mRNA and protein, Illumina HiSeq™ 2000 System and iTRAQ-coupled 2D LC-MS/MS analysis were utilized in systemic lupus erythematosus-specific induced pluripotent stem cells (SLE-iPSCs) and normal control-iPSCs (NC-iPSCs). The integration of multiple profiling datasets was realized since it could facilitate the identification of non-seed miRNA targets, as well as differentially expressed mRNAs and proteins.ResultsFor this study, profiling datasets of 1099 differentially expressed mRNAs, 223 differentially expressed microRNAs and 94 differentially expressed proteins were integrated. In order to investigate the influence of miRNA on the processes of regulating mRNAs and proteins’ levels, potential targets of differentially expressed mRNAs and proteins were predicted using miRanda, TargetScan and Pictar. Multiple profiling datasets were integrated to facilitate the identification of miRNA targets, as well as differentially expressed mRNAs and proteins. Through gene ontology (GO) analysis of differentially expressed mRNAs and proteins, biological processes that drive proliferation were identified, such as mRNA processing and translation. Western blot and Q-PCR confirmed AK4 protein and mRNA up-regulation. The findings also showed that TAGLN’s protein and mRNA level were down-regulated in SLE-iPSCs, both miR-371a-5p and let-7a-5p in SLE-iPSC were down-regulated and verified using Q-PCR. The up-regulation of AK4 involved in nucleotide biosynthesis suggested a general acceleration of anabolic metabolism induced by down-regulated miR-371a-5p, which might contribute to SLE.ConclusionBased on high throughput analysis, integrated miRNA, mRNA, and protein expression data were generated. Differentially expressed dates were also adopted in conjunction with in-silico tools to identify potential candidates for SLE-iPSCs. Representative miRNA, mRNA and proteins were verified. It was also expected that the knowledge gained from this study can be applied to assess the usefulness of pathogenesis and novel biomarker candidates of SLE, which may develop a new way for SLE diagnosis.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2809-9) contains supplementary material, which is available to authorized users.