In advanced HCC, tyrosine-kinase inhibitors obtain partial responses (PR) in some patients and complete responses (CR) in a few. Better understanding of the mechanism of response could be achieved by the radiomic approach combining digital imaging and serological biomarkers (α-fetoprotein, AFP and protein induced by vitamin K absence-II, PIVKA-II) kinetics. A physic-mathematical model was developed to investigate cancer cells and vasculature dynamics in three prototype patients receiving sorafenib and/or regorafenib and applied in seven others for validation. Overall four patients showed CR, two PR, two stable-disease (SD) and two progressive-disease (PD). The rate constant of cancer cells production was higher in PD than in PR-SD and CR (median: 0.398 vs. 0.325 vs. 0.316 C × day−1). Therapy induced reduction of neo-angiogenesis was greater in CR than in PR-SD and PD (median: 83.2% vs. 29.4% and 2.0%), as the reduction of cell-proliferation (55.2% vs. 7.6% and 0.7%). An additional dose-dependent acceleration of tumor vasculature decay was also observed in CR. AFP and cancer cells followed the same kinetics, whereas PIVKA-II time/dose dependent fluctuations were influenced also by tissue ischemia. In conclusion, pending confirmation in a larger HCC cohort, modeling serological and imaging biomarkers could be a new tool for systemic therapy personalization.