Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Antioxidant capacity is an important indicator for evaluating the growth and developmental quality of rice. This study has guiding significance for the cultivation of high-nutrient-value varieties. To investigate the molecular mechanisms underlying the antioxidant characteristics of rice grains after the filling stage, Yangzinuo 1 (YZN1) was used as the experimental material, and grains collected at five different time points (7 days apart) after the filling stage were used for transcriptome sequencing. Through weighted gene coexpression network analysis (WGCNA), a coexpression network of gene weights related to antioxidant characteristics was constructed. LOC_Os10g39140 , LOC_Os10g38276 , and LOC_Os05g45740 were identified from the 2 modules showing the highest correlations with the target traits. GO functional annotation showed that target modules were enriched in pathways related to phenylalanine, flavonoids, and other related pathways, such as GO:0006558, GO:0006559, GO:0009812, and GO:0009813. Correlation analysis with metabolites revealed that differentially expressed genes were significantly enriched in pathways related to antioxidant characteristics and energy metabolism processes, such as glycolysis/gluconeogenesis and flavonoid biosynthesis. The core genes identified in this study were found to be highly correlated with antioxidant characteristics and enriched in pathways related to metabolic and energy pathways and molecular activities. These results provide an effective dataset supporting breeding targeting functional rice characteristics. Supplementary Information The online version contains supplementary material available at 10.1038/s41598-024-73698-w.
Antioxidant capacity is an important indicator for evaluating the growth and developmental quality of rice. This study has guiding significance for the cultivation of high-nutrient-value varieties. To investigate the molecular mechanisms underlying the antioxidant characteristics of rice grains after the filling stage, Yangzinuo 1 (YZN1) was used as the experimental material, and grains collected at five different time points (7 days apart) after the filling stage were used for transcriptome sequencing. Through weighted gene coexpression network analysis (WGCNA), a coexpression network of gene weights related to antioxidant characteristics was constructed. LOC_Os10g39140 , LOC_Os10g38276 , and LOC_Os05g45740 were identified from the 2 modules showing the highest correlations with the target traits. GO functional annotation showed that target modules were enriched in pathways related to phenylalanine, flavonoids, and other related pathways, such as GO:0006558, GO:0006559, GO:0009812, and GO:0009813. Correlation analysis with metabolites revealed that differentially expressed genes were significantly enriched in pathways related to antioxidant characteristics and energy metabolism processes, such as glycolysis/gluconeogenesis and flavonoid biosynthesis. The core genes identified in this study were found to be highly correlated with antioxidant characteristics and enriched in pathways related to metabolic and energy pathways and molecular activities. These results provide an effective dataset supporting breeding targeting functional rice characteristics. Supplementary Information The online version contains supplementary material available at 10.1038/s41598-024-73698-w.
With the progress of society and the improvement of agricultural scientific technology, the single focus on high yield for rice production has gradually shifted to high quality. Coordinated development of grain yield and rice quality has become a core issue for researchers, and the underlying mechanisms remain to be solved. Two varieties, Zhongzheyou1 (ZZY1) and Zhongzheyou8 (ZZY8), were used as study materials under field conditions. The yield of ZZY1 was higher than that of ZZY8, which was mainly characterized by a higher seed-setting rate and grain weight. The rice quality of ZZY8 was better than that of ZZY1, primarily due to lower chalkiness and a higher head rice rate. The total dry matter weight of ZZY1 was lower than that of ZZY8, but the proportion of panicle dry matter weight or nonstructural carbohydrate to the total in the former was higher than that of the latter. The maximum grain-filling rate, average grain-filling rate, and key enzyme activities of ZZY1 were significantly higher than those of ZZY8, while the active grain-filling period was shorter than that of ZZY8. Furthermore, the ATP/ATPase content and energy charge values in the grains of ZZY1 were higher than those of ZZY8 at the early grain-filling stage. Transcriptome analysis showed that carbohydrate and energy metabolism were the main ways affecting the yield and quality of the two varieties. The energy production of ZZY1 was insufficient to simultaneously supply the needs thus leading to the discordant formation in its grain yield and rice quality formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.