Climate change and fire suppression have altered fire regimes globally, leading to larger, more frequent, and more severe wildfires. Responses of coldwater stream biota to single wildfires are well studied, but measured responses to consecutive wildfires in warmwater systems that often include mixed assemblages of native and nonnative taxa are lacking. We quantified changes in physical habitat, resource availability, and biomass of cold-and warmwater oligochaetes, insects, crayfish, fishes, and tadpoles following consecutive megafires (covering >100 km 2 ) in the upper Gila River, New Mexico, USA. We were particularly interested in comparing responses of native and nonnative fishes that might have evolved under different disturbance regimes. Changes in habitat and resource availability were related to cumulative fire effects, fire size, and postfire precipitation. The 2 nd of 2 consecutive wildfires in the basin was larger and, coupled with moderate postfire discharge, resulted in increased siltation and decreased algal biomass. Several insect taxa responded to these fires with reduced biomass, whereas oligochaete biomass was unaffected. Biomass of 6 of 7 native fish species decreased after the fires, and decreases were associated with site proximity to fire. Nonnative fish decreases after fire were most pronounced for coldwater salmonids, and warmwater nonnative fishes exhibited limited responses. All crayfish and tadpoles collected were nonnative and were unresponsive to fire disturbance. More pronounced responses of native insects and fishes to fires indicate that increasing fire size and frequency threatens the persistence of native fauna and suggests that management activities promoting ecosystem resilience might help ameliorate wildfire effects.