Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This manuscript investigates the influence of the chemical activation step order and process parameters on the specific capacitance of activated carbon derived from rice husk. The chemical activation was performed either before or after the carbonization step, using phosphoric acid (H3PO4) and potassium hydroxide (KOH) as activating agents. For activation before carbonization, the carbonization process was conducted at various temperatures (600, 750, 850, and 1050 °C). On the other hand, for activation after carbonization, the effect of the volume of the chemical agent solution was studied, with 0, 6, 18, 21, 24, and 30 mL/g of phosphoric acid and 0, 18, 30, 45, 60, and 90 mL/g of 3.0 M KOH solution. The results revealed that in the case of chemical activation before carbonization, the optimum temperature for maximizing specific capacitance was determined to be 900 °C. Conversely, in the case of chemical activation after carbonization, the optimal volumes of the chemical agent solutions were found to be 30 mL/g for phosphoric acid (H3PO4) and 21 mL/g for potassium hydroxide (KOH). Moreover, it was observed that utilizing phosphoric acid treatment before the carbonization step leads to an 21% increase in specific capacitance, attributed to the retention of inorganic compounds, particularly silica (SiO2). Conversely, when rice husks were treated with KOH after the carbonization step, the specific capacitance was found to be doubled compared to treatment with KOH prior to the carbonization step due to embedding of SiO2 and KHCO3 inorganic constituents. This study provides valuable insights into the optimization of the chemical activation step order and process parameters for enhanced specific capacitance in rice husk-derived activated carbon. These findings contribute to the development of high-performance supercapacitors using rice husk as a sustainable and cost-effective precursor material.
This manuscript investigates the influence of the chemical activation step order and process parameters on the specific capacitance of activated carbon derived from rice husk. The chemical activation was performed either before or after the carbonization step, using phosphoric acid (H3PO4) and potassium hydroxide (KOH) as activating agents. For activation before carbonization, the carbonization process was conducted at various temperatures (600, 750, 850, and 1050 °C). On the other hand, for activation after carbonization, the effect of the volume of the chemical agent solution was studied, with 0, 6, 18, 21, 24, and 30 mL/g of phosphoric acid and 0, 18, 30, 45, 60, and 90 mL/g of 3.0 M KOH solution. The results revealed that in the case of chemical activation before carbonization, the optimum temperature for maximizing specific capacitance was determined to be 900 °C. Conversely, in the case of chemical activation after carbonization, the optimal volumes of the chemical agent solutions were found to be 30 mL/g for phosphoric acid (H3PO4) and 21 mL/g for potassium hydroxide (KOH). Moreover, it was observed that utilizing phosphoric acid treatment before the carbonization step leads to an 21% increase in specific capacitance, attributed to the retention of inorganic compounds, particularly silica (SiO2). Conversely, when rice husks were treated with KOH after the carbonization step, the specific capacitance was found to be doubled compared to treatment with KOH prior to the carbonization step due to embedding of SiO2 and KHCO3 inorganic constituents. This study provides valuable insights into the optimization of the chemical activation step order and process parameters for enhanced specific capacitance in rice husk-derived activated carbon. These findings contribute to the development of high-performance supercapacitors using rice husk as a sustainable and cost-effective precursor material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.