Straw, a predominant agricultural residue, represents a significant waste product. Harnessing its potential is of paramount importance both in terms of research and economic value. In this study, chemically pretreated corn straw was infused with distinct microbial fungal mycelium variants and subsequently transformed into a series of biochars through a process involving carbonization and activation. The findings revealed enhancements in the specific surface area and total pore volume of mycelium-doped straw biochars compared to the original corn straw biochar (BCS). Additionally, discernible disparities were observed in their physical and chemical attributes, encompassing functional groups, surface chemistry, and micro-morphology. Notably, in water-based antibiotic removal experiments focusing on tetracycline hydrochloride (TH) and chloramphenicol (CP), the mycelium-doped straw biochars outperformed BCS. Their maximum adsorption capacities for TH and CP surpassed those of alternative adsorbents, including other biochars. Impressively, even after five cycles, the biochar exhibited a removal rate exceeding 80%, attesting to its robust stability. This study successfully emphasized the efficacy of incorporating fungal mycelium to enhance the adsorption properties of straw-based biochar, introducing a new theoretical basis for the development of lignocellulosic materials.