Detailed in this study are the results of fluorometric assays used to assess the impact of gradual nutrient limitation versus punctuated nitrate limitation on the lipid content and morphology of Neochloris oleoabundans cells in batch culture. Punctuated nitrate limitation was imposed during pre-log, log, late-log, stationary, and senescent growth phases, and the cells were analyzed by bulk fluorescence emission, flow cytometry, and hyperspectral fluorescence imaging. In addition to intrinsic spectroscopic signatures provided by scatter and endogenous fluorescence, Nile Red staining was employed to monitor relative changes in lipid concentration. Analysis of the fluorescence images and temporal data sets was performed using multivariate curve resolution and fitting to logistic growth models to extract parameters of interest. The spectral components independently isolated from the image and temporal data sets showed close agreement with one another, especially relating to chlorophylls and Nile Red in polar and neutral lipid fractions, respectively. The fastest accumulation and highest total neutral lipid per cell and per chlorophyll were obtained with punctuated nitrate limitation during log phase growth on day 4 of culture. The presence of unbound chlorophyll in the resulting lipid bodies supports a membrane recycling TAG accumulation mechanism mediated by chloropolast-ER lipid exchange. Furthermore, an increase in cell size, indicated by forward scatter, was also found to correlate with increased neutral lipid, providing a size selection mechanism for passive harvest of algal cells at peak lipid enrichment.