2017
DOI: 10.1088/2040-8986/aa53fb
|View full text |Cite
|
Sign up to set email alerts
|

Biomaterials in light amplification

Abstract: Biologically produced or inspired materials can serve as optical gain media, i.e. they can exhibit the phenomenon of light amplification. Some of these materials, under suitable dye-doping and optical pumping conditions, show lasing phenomena. The emerging branch of research focused on obtaining lasing action in highly disordered and highly light scattering materials, i.e. research on random lasing, is perfectly suited for biological materials. The use of biomaterials in light amplification has been extensivel… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
15
0
2

Year Published

2018
2018
2021
2021

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 36 publications
(17 citation statements)
references
References 135 publications
0
15
0
2
Order By: Relevance
“…[41,44,66,67] This can be carried out employing different techniques,s uch as rational design, structure-based mutagenesis,o rd irected evolution. [68,69] Even though FPs are routinely employed for imaging in molecular and cell biology, [66,69,[70][71][72][73][74] their use in photonic applications has recently been demonstrated, including lasers [75][76][77] and LEDs. [24][25][26][27] Since the pioneering work of Pikas et al, [75] in which wild-type GFP was employed in the first demonstration of ultrafast two-photon lasing of ab iological system, lasing applications with FPs have been realized in different cavity configurations,s uch as mammalian [76] or bacterial [78] cells,i ns olution, [79,80] highly compact dried films (15-45 mm, that is,1 00-fold higher than the normal concentration in the cytoplasm), [81,82] rod-shaped FP crystals (0.5-2 mmi nd iameter and 100-200 mmi nl ength), [83] and more recently polariton cavities.…”
Section: Methodsmentioning
confidence: 99%
“…[41,44,66,67] This can be carried out employing different techniques,s uch as rational design, structure-based mutagenesis,o rd irected evolution. [68,69] Even though FPs are routinely employed for imaging in molecular and cell biology, [66,69,[70][71][72][73][74] their use in photonic applications has recently been demonstrated, including lasers [75][76][77] and LEDs. [24][25][26][27] Since the pioneering work of Pikas et al, [75] in which wild-type GFP was employed in the first demonstration of ultrafast two-photon lasing of ab iological system, lasing applications with FPs have been realized in different cavity configurations,s uch as mammalian [76] or bacterial [78] cells,i ns olution, [79,80] highly compact dried films (15-45 mm, that is,1 00-fold higher than the normal concentration in the cytoplasm), [81,82] rod-shaped FP crystals (0.5-2 mmi nd iameter and 100-200 mmi nl ength), [83] and more recently polariton cavities.…”
Section: Methodsmentioning
confidence: 99%
“…As both mechanochemical processing of biopolymers [11][12][13] and self-assembly processes having a huge number of possibilities regarding both applicable materials and exact milling conditions, such processes should enable facile preparation of novel materials for a wide range of applications. Self-assembly of proteins is an efficient process enabling preparation of materials with potential applications ranging from food science to light-emitting diodes and organic dye lasers [14][15][16][17][18]. A very important self-assembly process is the conversion of proteins into fibrillar aggregates, known as amyloid fibrils [19][20][21].…”
Section: Introductionmentioning
confidence: 99%
“…Außerdem wird die Flexibilitätd er Konfiguration des Chromophors eingeschränkt durch eine Kombination von strukturellen und elektrostatischen Wechselwirkungen, die Wasserstoffbrücken, sterische Wechselwirkungen mit Gruppen in der Umgebung und das elektrostatische Feld, das durch die Proteinmatrix geschaffen wird, einschließen. [68,69] Obwohl FPs in der Molekular-u nd Zellbiologie schon routinemäßig bei der Bildgebung angewendet werden, [66,69,[70][71][72][73][74] wurde ihre Nutzung bei Photonikanwendungen, einschließlich Laser [75][76][77] und LEDs, [24][25][26][27] erst kürzlich gezeigt. [65] Und schließlich bietet die Proteinstruktur den geeigneten Rahmen fürd ie Feineinstel- lung der spektroskopischen Eigenschaften der FPs.D ies erfolgt durch verschiedene Mechanismen, etwa durch Veränderungen der Aminosäuren, die an der Bildung des Chromophors beteiligt sind, durch die Platzierung der Aminosäuren nahe am Chromophor,w as durch schwache Wechselwirkungen leichte Veränderungen der spektroskopischen Eigenschaften verursacht, oder durch eine Modifizierung des elektrostatischen Feldes,d as durch die Proteinmatrix am Chromophor gebildet wird.…”
Section: Allgemeine Beschreibung Der Fpsunclassified
“…[41,44,66,67] Dies kann unter Anwendung verschiedener Te chniken umgesetzt werden, zum Beispiel durch rationales Design, strukturbasierte Mutagenese oder zielgerichtete Evolution. [68,69] Obwohl FPs in der Molekular-u nd Zellbiologie schon routinemäßig bei der Bildgebung angewendet werden, [66,69,[70][71][72][73][74] wurde ihre Nutzung bei Photonikanwendungen, einschließlich Laser [75][76][77] und LEDs, [24][25][26][27] erst kürzlich gezeigt. Seit der bahnbrechenden Arbeit von Pikas et al, [75] bei der Wildtyp-GFP zur ersten Demonstration von ultraschnellem Zwei-Photonen-Lasern eines biologischen Systems verwendet wurde,w urden Laseranwendungen mit FPs in verschiedenen Kavitätskonfigurationen realisiert, zum Beispiel in Säugetier- [76] oder Bakterienzellen [78] ,i nL çsung, [79,80] in hochgradig kompakten Tr ockenfilmen (15-45 mm, also in ca.…”
Section: Allgemeine Beschreibung Der Fpsunclassified