Traumatic brain injury (TBI) poses a major public health challenge. No proven therapies for the condition exist so protective equipment that prevents or mitigates these injuries plays a critical role in minimizing the societal burden of this condition. Our ability to optimize protective equipment depends on our capacity to relate the mechanics of head impact events to morbidity and mortality. This capacity, in turn, depends on correctly identifying the mechanisms of injury. For several decades, a controversial theory of TBI biomechanics has attributed important classes of injury to cavitation inside the cranial vault during blunt impact. This theory explains counter-intuitive clinical observations, including the coup–contre-coup pattern of injury. However, it is also difficult to validate experimentally in living subjects. Also, blunt impact TBI is a broad term that covers a range of different head impact events, some of which may be better described by cavitation theory than others. This review surveys what has been learned about cavitation through mathematical modeling, physical modeling, and experimentation with living tissues and places it in context with competing theories of blunt injury biomechanics and recent research activity in the field in an attempt to understand what the theory has to offer the next generation of innovators in TBI biomechanics.