With the development of 3D bioprinting and the creation of innovative biocompatible materials, several new approaches have brought advantages to patients and surgical teams. Increasingly more bone defects are now treated using 3D-bioprinted prostheses and implementing new solutions relies on the ability of engineers and medical teams to identify methods of anchoring 3D-printed prostheses and to reveal the potential influence of bioactive materials on surrounding tissues. In this paper, we described why limb salvage surgery based on 3D bioprinting is a reliable and effective alternative to amputations, and why this approach is considered the new standard in modern medicine. The preliminary results of 3D bioprinting in one of the most challenging fields in surgery are promising for the future of machine-based medicine, but also for the possibility of replacing various parts from the human body with bioactive-based constructs. In addition, besides the materials and constructs that are already tested and applied in the human body, we also reviewed bioactive materials undergoing in vitro or in vivo testing with great potential for human applications in the near future. Also, we explored the recent advancements in clinically available 3D-bioprinted constructs and their relevance in this field.